

### RAM KRISHNA DHARMARTH FOUNDATION UNIVERSITY, BHOPAL

Ph.D. Entrance Exam Syllabus Subject: Microbiology

# GENERAL MICROBIOLOGY

Historical development of Microbiology – Spontaneous generation, germ theory of disease. General characteristics of different groups of microorganisms. Classification of bacteria – Numerical taxonomy, Chemotaxonomy, Nucleic acid-based, and 16s RNA-based classification. Fatty acid profile and Cell wall composition in classification of bacteria. Based on nutritional requirements, energy derivation, temperature and pH requirement, and salt tolerance.

Microscopy – Microscope and its operations – components – Microscope adjustments – Light sources – microscopic measurements – calibration: Types of microscope available – theory. Observation of various types of microbes under phase contrast, darkfield and fluorescence.

Isolation of microorganisms – Serial dilution to extinction in liquid medium and streaking/spreading on solid medium,. Other methods for isolating bacteria and fungi from soil and water. Replica-plating techniques for isolation of mutants. Identification of isolated microorganisms, Automated identification. Culturing of microorganisms: Solid culturing techniques – Solidifying agents, gel surface culture, membrane surface culture, liquid culturing technique.

Microbial growth – Growth curves: S-shaped and J-shaped growth curves, growth rate and generation time. Growth measurement: Direct count, colony counts, most-probable numbers, biomass measurements, light scattering (turbidometry, nephlometry). Ultrastructure of a bacterial cell –Chemotaxis and Quorum sensing in bacteria. Biology of *Agrobacterium tumefaciens, Escherichia coli, Saccharomyces cerevisiae, Aspergillus* sp. and *Streptomyces* sp.

Principles and methods of sterilization. Physical methods - autoclave, hot-air oven, pressure cooker, laminar air flow, filter sterilization. Radiation methods - UV rays, gamma rays, ultrasonic methods. Chemical methods - Use of alcohols, aldehydes, fumigants, phenols, halogens and hypochlorites. Phenol coefficient. Isolation of pure culture techniques - Enrichment culturing, dilution-plating, streak-plate, spread-plate and micromanipulator.

## MICROBIAL ECOLOGY

**Microbial Ecosystems:** Population, guilds, communities, homeostasis, Environment and microenvironment, Biofilms, Terrestrial environment, deep surface microbiology. Fresh water environment, lake and river microbiology. Marine Microbiology and Hydrothermal vents.

**Diversity, stability and succession:** Diversity indices, dominance indices, information statistics indices, Shannon index, Brillouin Index, Rank abundance diagrams, community similarity analysis, Jaccard Coefficient, Sorensen coefficient, cluster analysis. Community stability, stability hypothesis, Intermediate-disturbance hypothesis.

Meaning of succession: Tolerance and inhibition patterns of succession, theories of succession.

### **Ecology and Genetics**

Genetic structure of population: Genotype frequency, allele frequencies.

**Hardy-Weinberg Law:** Assumptions, predictions, derivation, extension and natural selection, Measuring genetic variation at protein level, measuring genetic variation at DNA level.

**Factors effecting gene frequencies:-**Mutation, Random genetic drift, migration, Hardy-Weinberg natural selection, Assortative mating, Inbreeding.

#### **Interactions and Ecosystem Management**

**Microbial Interactions:** Competetion and coexistence, Gause hypothesis, syntrophy, commensalism and Mutualism, predation, parasitism, and antagonism, Interaction with plants and animals.

Concept of sustainable development: Microbial technology and sustainable development.

Management and improvement of waste land/barren land.

Oil spills, damage and management petroleum and oil shore management.

### **MICROBIAL GENETICS**

Concept of gene – Muton, recon and cistron. One gene-one enzyme, one gene-one polypeptide, one geneone product hypotheses. Types of RNA and their functions. Outlines of RNA biosynthesis in prokaryotes. Genetic code. Structure of ribosomes and a brief account of protein synthesis. Operon concept. Regulation of gene expression in bacteria - lac operon. Basic principles of genetic engineering - restriction endonucleases, DNA. polymerases and ligases, vectors.

Genetic recombination – Types of recombination: homologous, reciprocal and nonreciprocal. Coefficient of coincidence of double crosses, chiasma interference. Plasmids – Types, properties, functions, detection, amplification, incompatibility and isolation of plasmids. Episomes. Replication and transfer of F plasmid.

Modes of gene transfer in bacteria: Transformation – Discovery, and molecular mechanism of natural transformation and recombination. *In vitro* transformation – Cold CaCl<sub>2</sub> technique, electroporation and triparental mating. Conjugation – Discovery of sex in bacteria. Development of Hfr strains.  $F_+ \times F_-$ , Hfr  $\times F_-$  and  $F' \times F_-$  (sexduction) crosses and their significance.

Recombination in bacteriophages. Genetics of yeast and *Neurospora*. Benzer's studies on r-II locus of T4 bacteriophage to establish the units recon, muton and cistron. Mutagenesis – Mutagens (physical, chemical and biological), types of mutations, molecular mechanism of mutation. Isolation and analysis of mutants. Site-directed mutagenesis, transposon mutagenesis and their applications.

Mitochondrial and chloroplast genomes. Concept of gene structure – Classical geneticist view to modern concept. Experimental evidences for colinearity of the gene and its product. Genetic material – DNA and RNA. Organization of histone genes, rRNA and tRNA genes in prokaryotes and eukaryotes. Constitutive genes, overlapping genes, split genes, regulatory genes, luxury genes, oncogenes and tumour suppressor genes.

# ADVANCE TECHNIQUES IN MICROBIOLOGY

**Biophysical Techniques-I:** Determination of size, shape and Molecular weight of Macromolecules:- by Viscosity, CD/ORD, Light scattering, diffusion sedimentation and Centrifugation techniques.

**Biophysical Techniques-II:** Electrophoresis: Agarose Gel, SDS-page, two-dimensional gel electrophoresis, capillary electrophoresis, immune-electrophoresis.

**Microscopical Techniques:** Electron Microscopy: SEM, TEM, Staining procedures and microscopy. Fluorescent Microscopy: Staining procedures and Microscopy, FISH. Laser scanning, confocal microscopy.Scanning tunneling and atomic force microscopy.Immunoelectron microscopy,cryoelectron microscopy.

Blotting techniques: Western, southern, northern, Radioimmunoassay.

**Other advance techniques:** NMR and its biological importance. Site-directed mutagenesis, transcriptional start point mapping.